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Abstract

Predictive simulation of systems comprised of numerous interconnected, tightly coupled com-
ponents promises to help solve many problems of scientific and national interest. However
predictive simulation of such systems is extremely challenging due to the coupling of a
diverse set of physical and biological length and time scales. This report investigates un-
certainty quantification methods for such systems that attempt to exploit their structure to
gain computational efficiency. The traditional layering of uncertainty quantification around
nonlinear solution processes is inverted to allow for heterogeneous uncertainty quantification
methods to be applied to each component in a coupled system. Moreover this approach
allows stochastic dimension reduction techniques to be applied at each coupling interface.
The mathematical feasibility of these ideas is investigated in this report, and mathematical
formulations for the resulting stochastically coupled nonlinear systems are developed.
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Chapter 1

Introduction

This report encapsulates the results of an FY08 late-start LDRD investigating mathemat-
ical and computational methods for predictive simulation of coupled systems. Predictive
simulation of systems comprised of numerous interconnected, tightly coupled components
promises to help solve many problems of scientific and national interest. Examples include
design and licensing of current and future nuclear energy reactors, development of renewable
energy technologies, vulnerability analysis of water and power supplies, and understanding
of complex biological networks. Often these systems strongly couple many different physical
or biological processes exhibiting phenomena at a diverse set of length and/or time scales.
Therefore simulating the entire coupled system at the level of fidelity to capture this phe-
nomena is extremely difficult for many systems of interest. Moreover, predictive simulation of
these systems requires significantly more computational effort than single-point high-fidelity
simulations; rather simulation code verification, model validation, and uncertainty quan-
tification (UQ) are indispensable processes required to justify a predictive capability in a
mathematically and scientifically rigorous manner. However implementing these processes
is very computationally challenging, making rigorous predictive simulation of many coupled
systems extremely difficult.

While these problems are clearly very challenging, they also present tremendous oppor-
tunities for the development of new predictive simulation methods optimized for these types
of systems. In this report we investigate uncertainty quantification methods for coupled
systems that try to take advantage of the inherent structure in these systems with the goal
of making the overall uncertainty computation more efficient. In particular, we show that it
is feasible to apply well-known uncertainty quantification methods to each component in a
coupled system independently to take advantage of UQ methods that may be optimized for
those components. This approach inverts the traditional layering of a UQ method on top of
a deterministic nonlinear solution method, and can be thought of as an intrusive UQ method
for coupled systems (where the UQ method applied to each component may be intrusive or
non-intrusive). In addition to allowing for specialized and heterogeneous UQ methods, it also
allows stochastic dimension reduction techniques to be applied at the interface between each
coupled component. Since, for most UQ methods, the cost of the uncertainty calculation
grows exponentially with this dimension, this technique can drastically reduce the overall
cost. The difficulty with this approach is that it translates what was a deterministic coupled
system into what is now a stochastically coupled system, requiring extension of traditional
deterministic coupled system nonlinear solution processes to the stochastic case.
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The organization of this report is as follows. In the following section, three types of cou-
pled systems that are commonly studied are discussed and mathematical representations are
formulated. Then in Chapter 2, and overview of deterministic nonlinear coupling methods
is provided, followed by a review of popular uncertainty quantification methods for single
component applications in Chapter 3. Chapter 4 contains the main technical contribution
of this report and describes several approaches for applying the UQ methods discussed in
Chapter 3 on a component by component basis in a coupled system, using the nonlinear
solution methods presented in Chapter 2 to solve the resulting stochastically-coupled non-
linear system. In this chapter we also discuss approaches for reducing the cost of the overall
uncertainty calculation through stochastic dimension reduction at the coupling interfaces.
Finally in Chapter 5 we summarize the conclusions of this work and provide recommenda-
tions for future efforts in exploiting this work to impact real-world coupled systems in science
applications.

1.1 Mathematical Models of Coupled Systems

The work presented in this report is limited to three broad categories of coupled systems
that are widely studied through the scientific community: multi-physics systems, interfacially
coupled systems, and network systems. Moreover our work is limited to either steady-state
problems or transient problems where a suitable implicit time discretization method has been
chosen. In the latter case, the methods discussed here are then applicable to the implicit
nonlinear equations for each time step. We realize the interplay between time discretization,
nonlinear solution, and uncertainty quantification is very important and can be quite delicate
in practice. However rigorous examination of this interplay was well beyond the scope of the
LDRD and this report. We now discuss each of the three types of coupled systems studied
in more detail.

The first class of coupled systems studied is multi-physics systems, which are systems
consisting of multiple interacting physics in a single computational domain. A well-known
example is coupled flow and heat transfer in a fluid body (see Figure 1.1(a)). Here the
components of one physical process (fluid flow) interact with the components of another
(heat transfer) at all points in the physical domain. Such systems are often modeled by a
set of coupled, possibly nonlinear, partial differential equations over a given domain. After
discretization in space, a generic two-component multi-physics system can be represented by
the following coupled nonlinear equations:

f1(u1, u2) = 0,

f2(u1, u2) = 0.
(1.1)

Here u1 ∈ Rn1 and u2 ∈ Rn2 represent the discretized solution variables for each physical sys-
tem, and f1 : Rn1+n2 → Rn1 and f2 : Rn1+n2 → Rn2 represent the corresponding discretized
residuals.

A second, more restricted type of coupling, is interfacial coupling. Here we have two

8



(a) Multi-physics coupling

(b) Interfacial coupling (c) Network coupling

Figure 1.1. Three types of coupled systems. (a) Multi-
physics coupling of two-dimensional fluid flow (black stream-
lines) and temperature (color gradient). (b) Interfacial cou-
pling between turbulent air flow and structural dynamics
through the shell of the vehicle (reprinted with permission
from [31]). (c) Network coupling of a high-fidelity electri-
cal circuit device model to a low fidelity network, simulating
radiation damage to the electrical circuit.

or more physical domains each containing separate physical processes, joined by a common
interface. The physical processes are independent in each domain apart from the interaction
at the interface. A relevant example within Sandia is the modeling of a reentry vehicle as
it travels through the atmosphere (see Figure 1.1(b)). The flight of the vehicle through
the atmosphere creates a pressure load on the shell of the vehicle which in turn affects the
structural dynamics of the interior of the vehicle. Here the two domains are the fluid exterior
to the vehicle (compressible, turbulent fluid flow) and the interior of the vehicle (structural
dynamics) coupled through the shell of the vehicle (interface). The physics in each domain is
typically modeled as a set of partial differential equations that are coupled through boundary
conditions. After spatial discretization, a generic two-component interfacially coupled system
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can be represented as

f1(u1, g2(u2)) = 0,

f2(g1(u1), u2) = 0.
(1.2)

Here g1 : Rn1 → Rm1 and g2 : Rn2 → Rm2 represent the interfaces between systems 1 and
2 and typically map their argument to a much lower dimensional space, i.e., m1 � n1 and
m2 � n2. In this case the discrete residuals f1 : Rn1+m2 → Rn1 and f2 : Rm1+n2 → Rn2 only
depend on the other solution variables through the interfaces g1 and g2.

The third type of coupling considered is that of network systems. Here, a possibly
large number of separate domains are coupled together through a series of low-fidelity in-
teractions. A well studied example is an electronic circuit (see Figure 1.1(c)) where many
electrical components are coupled together through a series of electrical connections. The
electrical properties of each device evolve according to their physics, and the voltages and
currents at their connections. These connections in turn are assumed to satisfy some low-
fidelity relationship, such as Kirchhoff’s laws. The fidelity of the components in a network
system often vary, from high-fidelity single and multi-physics models to low fidelity compact
models. Thus the overall mathematical structure of such systems can take many forms, but
have the unifying feature that the network model must be discrete in space, i.e., either a
system of ordinary or differential-algebraic equations (for time-dependent problems) or a
system of algebraic equations (for steady problems). The models for each system compo-
nent could be a single or multi-physics system of partial differential equations or a set of
algebraic/ordinary-differential/differential-algebraic equations. To mathematically represent
such a system, consider the simple network schematic described by Figure 1.2, consisting of
three vertices (or nodes) connected by two components. A set of scalar unknowns x1, x2

x1 x2 x3
z1 z2

Figure 1.2. A simple two component network example.

and x3 is associated with each vertex. In an electrical circuit, these would represent volt-
ages. Assume each device connecting vertices 1 to 2 and 2 to 3 has a scalar output z1 and
z2 respectively, that is a function of the unknowns associated with each vertex connected
to the device. In a circuit, these outputs correspond to the current through the device as
determined by the voltages. Moreover assume these outputs are determined by solving an
auxiliary set of implicit algebraic equations, i.e.,

z1 = g1(u1, x1, x2) s.t. f1(u1, x1, x2) = 0,

z2 = g2(u2, x2, x3) s.t. f2(u2, x2, x3) = 0.
(1.3)

These equations could, for example, represent high-fidelity PDE models of electrical devices
which determine electrical currents as a function of supplied voltage boundary conditions.
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Finally, the unknown nodal values x = (x1, x2, x3) are determined by solving an implicit set
of nonlinear equations F (z, x) = 0 for x, where z = (z1, z2). The complete specification of
the network nonlinear problem is then

z1 = g1(u1, x1, x2) s.t. f1(u1, x1, x2) = 0,

z2 = g2(u2, x2, x3) s.t. f2(u2, x2, x3) = 0,

0 = F (z, x).

(1.4)

Often in computational settings, all three types of coupled systems may occur in a given
system simulation. Therefore it is important to leverage nonlinear solution algorithms that
are optimized for each type of coupled system and strength of coupling. An overview of
available approaches is provided in the next chapter.
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Chapter 2

Solution Strategies for Nonlinear
Coupled Systems

When discussing solution strategies for the types of coupled systems presented in the previous
chapter, one must distinguish between coupled physics and coupled simulation codes. In
principle, any single simulation code can be written to simulate any of these types of coupled
systems. Typically in this case, a fully coupled Newton method (possibly with a globalization
strategy) is employed to approximate the solution to the coupled nonlinear equations. An
equally important case is when multiple simulation codes are coupled in some fashion to
simulate a coupled system, where each simulation code separately approximates the solution
to one or more sets of physics in the coupled system. The advantage of this approach is it
leverages existing simulation code technology when transitioning to coupled systems. This
advantage is non-trivial given that in many cases domain-specific knowledge is built into
simulation codes for specialized physics that may be difficult or impossible to generalize
when incorporating new physics. The difficulty with this approach is that it can be difficult
to extract the relevant derivative information in order to implement robust and efficient
simulation strategies. For that reason, numerous nonlinear solution strategies that try to
obtain Newton-like efficiency and robustness while minimizing the amount of derivative
information necessary have been studied [50]. In this chapter we provide a brief overview of
some of these methods that are more strongly suited to the types of coupled systems discussed
previously in order to provide a setting to generalize them for uncertainty quantification in
Chapter 4.

2.1 Forward Coupling

A significant simplification occurs for all three types of coupled systems when the system is
only forwardly coupled, i.e., the two-component multi-physics system (1.1) becomes

f1(u1) = 0,

f2(u1, u2) = 0,
(2.1)

while the two-component interfacially coupled system (1.2) becomes

f1(u1) = 0,

f2(g1(u1), u2) = 0,
(2.2)
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and finally the two-component network coupled system (1.4) becomes

z1 = g1(u1, x1) s.t. f1(u1, x1) = 0,

z2 = g2(u2, x2, x3) s.t. f2(u2, x2, x3) = 0,

0 = F (z, x).

(2.3)

In all three cases, the solution to the first system u1 can be solved for independently and
substituted into the remaining equations. This allows any nonlinear solver method to be
separately applied to the first and remaining systems with no solver communication between
them. Of course, this setting is clearly not generic, but forms the basis of the Picard method
when treating the fully coupled system.

2.2 Picard Iteration

Picard iteration, also known as successive substitution, is a simple numerical method for
approximating the solution to a fully coupled system (1.1), (1.2) or (1.4). It works by
solving each component in the coupled system for its solution variables, treating the other
variables as fixed quantities. This is repeated in a round-robin fashion until some measure
of convergence is achieved (typically the size of the change of the solution variables from
iteration to iteration, and/or the size of the residual of each component evaluated at the
most current solution values). For example, an algorithm for applying this technique to
the two-component interfacially coupled system (1.2) is displayed in Algorithm 1. As with

Algorithm 1 Picard iteration for the two-component interfacially coupled system(1.2).

Require: Initial guesses u
(0)
1 and u

(0)
2 for u1 and u2:

k = 0
while not converged do

k = k+1
Solve f1(u

(k)
1 , g2(u

(k−1)
2 )) = 0 for u

(k)
1

Solve f2(g1(u
(k)
1 ), u

(k)
2 ) = 0 for u

(k)
2

end while

forward coupling, any solver method can be used for each of the solves above. The problem
with this approach is that convergence is slow (linear), and needs additional requirements
on f1 and f2 to converge [50].

2.3 Newton’s Method

Due to the slow convergence and lack of robustness of Picard iteration, Newton’s method is
often preferred for simulating coupled systems. However its implementation is significantly

14



more complicated in that at each iteration, it requires solving the following Newton systems:[
∂f1
∂u1

∂f1
∂u2

∂f2
∂u1

∂f2
∂u2

][
∆u

(k)
1

∆u
(k)
2

]
= −

[
f1(u

(k−1)
1 , u

(k−1)
2 )

f2(u
(k−1)
1 , u

(k−1)
2 )

]
(2.4)

for multi-physics coupling,[
∂f1
∂u1

∂f1
∂g2

∂g2
∂u2

∂f2
∂g1

∂g1
∂u1

∂f2
∂u2

][
∆u

(k)
1

∆u
(k)
2

]
= −

[
f1(u

(k−1)
1 , g2(u

(k−1)
2 ))

f2(g1(u
(k−1)
1 ), u

(k−1)
2 )

]
(2.5)

for interfacial coupling, and


∂f1
∂u1

0 ∂f1
∂x1

∂f1
∂x2

0

0 ∂f2
∂u2

0 ∂f2
∂x2

∂f2
∂x3

∂F
∂z1

∂g1
∂u1

∂F
∂z2

∂g2
∂u2

∂F
∂z1

∂g1
∂x1

+ ∂F
∂x1

∂F
∂z1

∂g1
∂x2

+ ∂F
∂z2

∂g2
∂x2

+ ∂F
∂x2

∂F
∂z2

∂g2
∂x3

+ ∂F
∂x3




∆u
(k)
1

∆u
(k)
2

∆x
(k)
1

∆x
(k)
2

∆x
(k)
3

 =

−

f1(u
(k−1)
1 , x

(k−1)
1 , x

(k−1)
2 )

f2(u
(k−1)
2 , x

(k−1)
2 , x

(k−1)
3 )

F (z(k−1), x(k−1))

 (2.6)

for network coupling, where u
(k)
1 = u

(k−1)
1 +∆u

(k)
1 , and so on. Numerous methods are available

for estimating the cross-physics derivatives appearing in these systems [50].

2.4 Nonlinear Elimination

The disadvantage of the full Newton approach is it requires forming and solving the fully-
coupled Newton systems (2.4), (2.5), and (2.6), making it very difficult to use nonlinear
solvers, linear solvers, and preconditioners that are specialized to each system component.
An alternative approach that maintains the quadratic convergence of Newton’s method, but
allows for greater flexibility in the choice of solver for each system component is nonlinear
elimination. This approach works by eliminating solution variables from each system compo-
nent, relying on the Implicit Function Theorem. For example, the equation f1(u1, g2(u2)) = 0
for an interfacially coupled system can thought of as an implicit equation defining u1 as a
function of u2, which can be numerically evaluated using any appropriate nonlinear solver
method. We then apply a nonlinear solver method to the reduced system

f2(g1(u1(u2)), u2) = 0. (2.7)

Applying Newton’s method to this system requires computation of the sensitivity ∂u1/∂u2,
which by the Implicit Function Theorem is

∂u1

∂u2

= −
(
∂f1

∂u1

)−1
∂f1

∂g2

∂g2

∂u2

. (2.8)
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Note this linear system involves the same matrix as Newton’s method applied to the system
f1(u1, g2(u2)) = 0 with u2 held fixed, with m2 right-hand-sides. Clearly this approach is only
effective when m2 is reasonably small, and therefore is typically not appropriate for shared-
domain multi-physics problems such as (1.1). The Newton system required for Newton’s
method applied to the reduced system (2.7) is(

∂f2

∂g1

∂g1

∂u1

∂u1

∂u2

+
∂f2

∂u2

)
∆u

(k)
2 = −f2(g1(u

(k)
1 ), u

(k−1)
2 ). (2.9)

The complete algorithm for a Newton-based nonlinear elimination method for interfacial
coupling is displayed in Algorithm 2.

Algorithm 2 Newton-based nonlinear elimination for two-component interfacial coupling.

Require: Initial guesses u
(0)
1 and u

(0)
2 for u1 and u2

k = 0
while not converged do

k = k+1
Solve f1(u

(k)
1 , g2(u

(k−1)
2 )) = 0 for u

(k)
1

Compute
∂u

(k)
1

∂u
(k−1)
2

= − ∂f1
∂u1

−1 ∂f1
∂g2

∂g2

∂u
(k−1)
2

Solve

(
∂f2
∂g1

∂g1

∂u
(k)
1

∂u
(k)
1

∂u
(k−1)
2

+ ∂f2

∂u
(k−1)
2

)
∆u

(k)
2 = −f2(g1(u

(k)
1 ), u

(k−1)
2 )

u
(k)
2 = u

(k−1)
2 + ∆u

(k)
2

end while

Nonlinear elimination is also effective for network problems such as (1.4). In this case
however, both u1 and u2 are eliminated, leaving just the network solve F (z, x) = 0. More
precisely, the equations f1(u1, x1, x2) = 0 and f2(u2, x2, x3) = 0 implicitly define u1 and u2

as functions of x1, x2 and x2, x3 respectively. Through the relations z1 = g1(u1, x1, x2) and
z2 = g2(u2, x2, x3), z1 and z2 are then implicit functions of x with derivatives

∂z1

∂x1

= −∂g1

∂u1

(
∂f1

∂u1

)−1
∂f1

∂x1

+
∂g1

∂x1

,

∂z1

∂x2

= −∂g1

∂u1

(
∂f1

∂u1

)−1
∂f1

∂x2

+
∂g1

∂x2

,

∂z2

∂x2

= −∂g2

∂u2

(
∂f2

∂u2

)−1
∂f2

∂x2

+
∂g2

∂x2

,

∂z2

∂x3

= −∂g2

∂u2

(
∂f2

∂u2

)−1
∂f2

∂x3

+
∂g2

∂x3

.

(2.10)

Newton’s method applied to the network equation F (z, x) = 0 then yields the linear system(
∂F

∂z

∂z

∂x
+
∂F

∂x

)
∆x(k) = −F (y(k−1), x(k−1)). (2.11)
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Algorithm 3 Newton-based nonlinear elimination for two-component network coupling.

Require: Initial guesses u
(0)
1 , u

(0)
2 , and x(0) for u1, u2, and x.

k = 0
while not converged do

k = k+1
Solve f1(u

(k)
1 , x

(k−1)
1 , x

(k−1)
2 ) = 0 for u

(k)
1

Solve f2(u
(k)
2 , x

(k−1)
2 , x

(k−1)
3 ) = 0 for u

(k)
2

Evaluate z
(k)
1 = g1(u

(k)
1 , x

(k−1)
1 , x

(k−1)
2 )

Evaluate z
(k)
2 = g2(u

(k)
2 , x

(k−1)
2 , x

(k−1)
3 )

Compute ∂z(k)/∂x(k−1) via (2.10)

Solve
(

∂F
∂z(k)

∂z(k)

∂x(k−1) + ∂F
∂x(k−1)

)
∆x(k) = −F (z(k), x(k−1))

x(k) = x(k−1) + ∆x(k)

end while

The complete algorithm for a Newton-based nonlinear elimination method for network cou-
pling is displayed in Algorithm 3.

The three nonlinear solution methods discussed here provide the necessary algorithmic
foundation for simulation of nonlinear coupled systems from a nonlinear solver perspective.
We now turn to a discussion of popular uncertainty quantification methods for propagating
uncertainties through individual components in a coupled system.
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Chapter 3

Uncertainty Representation and
Propagation Methods

Most applications in engineering and science are affected by uncertainty in the input data [5,
6]. For example, highly heterogeneous materials may have properties that vary over small
length scales so that these properties have to be often determined from measurements at a
few locations. These types of uncertainties are known as epistemic since they are related to
incomplete knowledge. In other situations, uncertainty can be due to an intrinsic variability
in the system as, for instance, in turbulent fluctuations of a flow field around an airplane
wing. When sufficient data does exist, probability distributions can be utilized to fully
characterize these uncertainties in a statistical manner, and are referred to as being aleatory.
In practice, it is necessary to address both types of uncertainties. Discussions about sources
of uncertainties are given, in a general setting, in [22] and for some applications to solid
mechanics, in [16, 28, 29, 67, 68].

Because it is essential for dealing with realistic experimental data and assessing the reli-
ability of predictions based on numerical simulations, the development of UQ methodologies
is a very active area of research. There are, in fact, several approaches being followed for
quantifying uncertainties: worst-case-scenario (or anti-optimization) methods [13, 49] that
are useful in cases where one knows only a little information about the uncertainty in the
input data, probabilistic methods that characterize uncertainties using stochastic differential
equations [2, 3, 9, 10, 17, 18, 34, 40–42, 54, 55, 57, 58, 62–66, 75–83, 89, 99, 100, 102, 104],
and knowledge-based methods that characterize uncertainties using fuzzy sets [19, 27], evi-
dence theory (Dempster-Shafer theory) [30, 56, 73], subjective probability [48, 90], Bayesian
inference [14, 15, 20, 59, 93, 103], and other means of including expert opinions. All three
approaches can be applied directly or indirectly to partial differential equations (PDEs) with
uncertain input data. Despite the large effort these citations represent, it is widely recog-
nized that new, more effective methods for treating uncertainty are still needed and will
become increasingly important in virtually all branches of engineering and science [7, 74].

A crucial, yet often complicated, ingredient that all approaches to UQ must incorpo-
rate is a proper description of the uncertainty in the system parameters and the external
environment. All such uncertainties can be included in mathematical models adopting the
probabilistic approach, provided enough information is available for an accurate statistical
characterization of the data. Moreover, the mathematical model may depend on a set of

19



distinct uncertain parameters, which may be represented as random variables with a given
joint probability distribution. In other situations, the input data may vary randomly from
one point of the physical domain to another and from one time instant to another. In these
cases, the uncertainty in the inputs should rather be described in terms of random fields. Ap-
proaches to describe correlated random fields consist of the Karhunen-Loève expansion (KL)
[61] (or Fourier-Karhunen-Loève expansion [60]), or expansions in terms of global orthogo-
nal polynomials [41, 95, 101]. Both expansions represent the field via an infinite number of
random variables, and exist provided that the random field has a bounded second moment.
Other nonlinear expansions [44] and transformations [66, 96] have been considered. While
these expansions are infinite, often realizations slowly vary in space and time, and thus only
a few terms are typically needed to accurately approximate the random field [8, 33]. In
the following section, more detail is provided on the representation of random fields, and in
particular on the Karhunen-Loève expansion which will be useful in Chapter 4 for dimension
reduction between coupled components. For a more thorough treatment of random fields
and their representations, see [31].

3.1 Representation of Random Fields

Let d be a positive integer, D ⊂ Rd be compact, and (Ω,B, µ) be a complete probability
space. For any x ∈ D let ux : Ω→ Rm be an m-valued random vector. If d = 1, the collection
{ux : x ∈ D} is called a stochastic process, and if d > 1 it is referred to as a random field.
For given x ∈ D and ω ∈ Ω, we will equivalently use the notation ux(ω) = u(x, ω). Assume
for each x ∈ D that ux ∈ L2

µ(Ω). Define the expectation operator

Eux =

∫
Ω

uxdµ (3.1)

and the covariance operator

covu(x, x
′) = E

(
(ux − Eux)(ux′ − Eux′)T

)
. (3.2)

Treated as a linear operator on Rm, the covariance operator is clearly symmetric. Moreover,
if we assume it is bounded in the sense∫

D

∫
D

||covu(x, x
′)||2Fdxdx′ <∞ (3.3)

(e.g., if it is jointly continuous in x and x′) where || · ||F denotes the Frobenius norm, then it
has an infinite set of decreasing, non-negative eigenvalues λk and eigenfunctions bk(x) which
satisfy ∫

D

covu(x, x
′)bk(x

′)dx′ = λkbk(x), k = 1, . . . ,∞. (3.4)

The eigenfunctions are orthonormal in that∫
D

bTi (x)bj(x)dx = δij, i, j = 1, . . . ,∞. (3.5)
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Moreover ux admits the representation

ux(ω) = Eux +
∞∑
k=0

√
λkbk(x)ξk(ω) (3.6)

where each ξk : Ω→ R is a random variable satisfying

ηk(ω) =
1√
λk

∫
D

bTk (x)(u(x, ω)− Eux)dx. (3.7)

Equation (3.6) is called the Karhunen-Loève expansion [61] of the random field u. The ran-
dom variables {ξk} have zero mean and unit covariance, i.e., E(ξiξj) = δij for i, j = 1, . . . ,∞.
By truncating Equation (3.6) at some finite number of terms N , a finite dimensional ap-
proximation of the random field u is obtained.

3.2 An Overview of Numerical Uncertainty Quantifi-

cation Methods

We now provide a brief overview of several popular numerical uncertainty quantification
methods for estimating uncertainties in simulation code outputs. Monte Carlo methods (see,
e.g., [32]) are the most popular approaches for approximating expected values and other
statistical moments of quantities of interest based on the solution of stochastic problems.
They are based on independent realizations of the input random variables ξ; approximations
of the expectation or other quantities of interest are obtained by a simply averaging over
the corresponding realizations of that quantity. Thus, the method requires a deterministic
simulation for each realization. The resulting numerical error is proportional to 1/

√
M ,

where M is the number of realizations, thus requiring a very large number of samples to
achieve small errors. In particular cases, convergence can be improved [52, 72, 86]. Other
ensemble-based methods such as quasi-Monte Carlo, Latin hypercube sampling, lattice rules
and orthogonal arrays (e.g., see [47, 69] and the references therein), have been devised to
produce “faster” convergence rates, e.g., proportional to (log(M)r(N)/M), where r(N) > 0
grows with the number N of random variables.

Recently, other approaches have been proposed that often feature much faster convergence
rates. These include stochastic Galerkin methods [9, 10, 23, 24, 33, 40, 41, 57, 66, 76, 99],
stochastic collocation methods [11, 65, 70, 71, 84, 98], and perturbation, Neumann and
Taylor expansion methods [4, 36, 53, 55, 62, 85, 96, 97]. These approaches transform the
original stochastic problem into a deterministic one with a large number of parameters and
differ in the choice of the approximating spaces. We refer to these as stochastic Galerkin
methods by generalizing the traditional definition in Section 3.3 to include most, if not all,
of these methods. For more details please refer to the recent work [45, 46]. They employ
standard approximations in physical space, e.g., a finite element method, and polynomial
approximation in the probability domain, either by full polynomial spaces [39, 66, 99], tensor
product polynomial spaces [9, 33, 76], or piecewise polynomial spaces [9, 57]. The efforts
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[40, 41] use a formal Wiener chaos, or polynomial chaos, expansion in terms of Hermite
polynomials. A similar approach using general orthogonal polynomials is described by [99].
Generally, these techniques are intrusive in the sense that they are non-ensemble-based
methods, requiring the solution of discrete systems that couple all spatial and probabilistic
degrees of freedom. Recently, non-intrusive polynomial chaos methods [1, 21, 51] have been
developed that, through the use of quadrature rules, decouple the stochastic and spatial
degrees of freedom.

More recently, stochastic collocation methods that are based on either full or sparse ten-
sor product approximation spaces [11, 12, 35, 65, 70, 71, 94, 98] have gained considerable
attention. As shown in [11], stochastic collocation methods can essentially match the fast
convergence of intrusive polynomial chaos methods, even coinciding with them in partic-
ular cases. The major difference between them is that stochastic collocation methods are
ensemble-based, non-intrusive approaches that achieve fast convergence rates by exploit-
ing the inherent regularity of PDE and ODE solutions with respect to parameters [87, 88].
Compared to non-intrusive polynomial chaos methods, they also require fewer assumption
on the underlying stochastic problem. Finally, they can also viewed as a stochastic Galerkin
method (see the next section) in which one uses Lagrange interpolatory polynomials built
from the zeros of orthogonal polynomials with respect to the joint PDF of the input random
variables. For more details about the relations between these methods see [45].

3.3 The Stochastic Galerkin UQ Framework

Many of the numerical methods discussed above can be developed within a single stochas-
tic Galerkin framework. This framework translates the underlying stochastic problem to a
deterministic-parametric problem over a finite-dimensional parameter space. This transla-
tion forms the basis for the coupled-system uncertainty quantification approach discussed in
the next chapter. We now summarize the stochastic Galerkin framework, showing how the
Monte Carlo, stochastic collocation, and polynomial chaos methods derive from it based on
the choice of approximating basis over the parameter space. We assume the physical system
of interest is finite dimensional (e.g., system of ordinary differential equations), or has been
discretized in space to yield a finite dimensional approximation. Consistent with the as-
sumption throughout this report, we assume the system is steady, or a suitable implicit time
discretization scheme has already been applied, and therefore the system is represented by a
finite-dimensional system of algebraic equations (for either the steady-state approximation
or a time-step in a temporal discretization)

f(u) = 0, f : Rn → Rn. (3.8)

We assume the physical system represented by (3.8) is subject to a finite set of random
parameters ξ = (ξ1, . . . , ξN) : Ω→ RN defined on a probability space (Ω,B, µ), either because
the problem itself can be described by a finite number of random variables or because the
input coefficients are modeled as truncated random fields. We wish to approximate a random
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function u : Ω→ Rn such that the following equation is satisfied µ-almost everywhere:

f(u(ξ), ξ) = 0. (3.9)

Denote by Γ = ξ(Ω) the image of ξ in RN and assume the components ξ = (ξ1, . . . , ξN) have
a joint probability density function (PDF) ρ : Γ → R+ with ρ ∈ L∞(Γ). We assume each
component of u belongs to L2

ρ(Γ).

For a given P , let VP be a finite-dimensional subspace of L2
ρ(Γ) with dimension P+1. Let

{ψk : k = 0, . . . , P} be a basis for VP , and given a set of coefficients {uk ∈ Rn : k = 0, . . . , P},
define

û(y) =
P∑
k=0

ukψk(y), y ∈ Γ. (3.10)

The stochastic Galerkin approximation to the solution of (3.9) is a representation of the
form (3.10) such that ∫

Γ

f(û(y), y)ψk(y)ρ(y)dy = 0, k = 0, . . . , P. (3.11)

In general, Equation (3.11) defines an implicit set of nonlinear equations for all of the ex-
pansion coefficients {uk : k = 0, . . . , P}. Thus it induces a new deterministic nonlinear
problem

f̄(ū) = 0, f̄ = (f̄0, . . . , f̄P ) : R(P+1)n → R(P+1)n (3.12)

for the unknown expansion coefficients ū = (u0, . . . , uP ). The form of this set of equations,
and the resulting solution techniques required to approximate solutions, depend greatly on
the choice of basis {ψk}. Three choices of basis will be described below, yielding the Monte
Carlo, stochastic collocation, and polynomial chaos methods. In each case, the form of the
nonlinear equations f̄(ū) = 0 will be indicated, as well as its Jacobian derivative ∂f̄/∂ū,
which will be useful in the following chapter on applying these methods to each component
in a coupled system.

3.3.1 Monte Carlo

The Monte Carlo method approximates an integral quantity of interest g(u(ξ)) of the so-
lution to (3.9) by simply averaging that quantity of interest over a suitably chosen set of
deterministic realizations {yj : j = 0, . . . , P} of the random parameters ξ. Given this set of
realizations, let ∪Pk=0Γk denote a partitioning of Γ into disjoint subsets where each yk ∈ Γk
for k = 0, . . . , P . For each k, define ψk(y) = 1 if y ∈ Γk and zero otherwise, and let uk satisfy
f(uk, yk) = 0. Define û as above, then for k = 0, . . . , P ,∫

Γ

f(û(y), y)ψk(y)ρ(y)dy =

∫
Γk

f(uk, y)ρ(y)dy ≈ 0. (3.13)

Thus Monte Carlo is a stochastic Galerkin method using a piecewise constant basis. As
expected, the nonlinear problem (3.12) defining the coefficients ū is given by the following
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set of uncoupled nonlinear problems:

f̄k(ū) = f(uk, yk), k = 0, . . . , P (3.14)

which are solved separately for each uk. Moreover its Jacobian is block-diagonal:

∂f̄i
∂ūj

=
∂f

∂u
(uj, yj)δij, i, j = 0, . . . , P. (3.15)

3.3.2 Stochastic Collocation

The stochastic collocation method approximates the solution to (3.9) through interpolation
at a suitably chosen set of interpolation points {yk : k = 0, . . . , P}:

û(y) =
P∑
k=0

ukψk(y), f(uk, yk) = 0, k = 0, . . . , P, (3.16)

where {ψk} are Lagrange interpolatory polynomials:

ψk(yj) = δkj, k, j = 0, . . . , P. (3.17)

If the integrals in the defining stochastic Galerkin equations (3.11) are approximated via a
quadrature method with weights {wk} using the interpolation points {yk} as the quadrature
points, then we have for k = 0, . . . , P,∫

Γ

f(û(y), y)ψk(y)ρ(y)dy ≈
P∑
j=0

wjf(û(yj), yj)ψk(yj)ρ(yj) = wkf(uk, yk)ρ(yk) = 0. (3.18)

Thus stochastic collocation is a stochastic Galerkin method using a Lagrange interpolatory
basis. As with the Monte Carlo method above, the equations (3.12) defining the coefficients
ū are uncoupled

f̄k(ū) = f(uk, yk), k = 0, . . . , P (3.19)

with a block-diagonal Jacobian

∂f̄i
∂ūj

=
∂f

∂u
(uj, yj)δij, i, j = 0, . . . , P. (3.20)

3.3.3 Polynomial Chaos

The polynomial chaos method computes a representation (3.10) where the basis {ψk : k =
0, . . . , P} is chosen as a set of multi-dimensional polynomials that are orthogonal with respect
to the density ρ: ∫

Γ

ψi(y)ψj(y)ρ(y)dy = δij, i, j = 0, . . . , P. (3.21)
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In most settings, the polynomials ψk are tensor products of one-dimensional polynomials
where the total polynomial degree is restricted to be less than or equal to a given de-
gree M (the so-called complete polynomial basis). In this case the density ρ must factor,
ρ(y) = ρ1(y1) . . . ρN(yN), which is in general only true if the input random variables ξ are
independent. For a given dimension N and degree M , the size of this basis P is given by

P =
(N +M)!

N !M !
. (3.22)

Note this is considerably smaller than the full tensor product size of MN . When ρ is the
Gaussian density and the {ψk} are Hermite polynomials, the method is referred to as poly-
nomial chaos. For other labeled densities (e.g., uniform) with corresponding polynomials
(e.g., Legendre), it is referred to as generalized polynomial chaos.

Generally this approach creates a fully-coupled nonlinear system

f̄k(ū) =

∫
Γ

f(û(y), y)ψk(y)ρ(y)dy = 0, k = 0, . . . , P. (3.23)

for the unknown expansion coefficients ū that must be formulated and solved. For general
nonlinear problems, the integral appearing in (3.23) can only be approximated. For linear
problems, or problems that only contain multiplicative nonlinearities, they can be evaluated
exactly using the orthogonality relationships (3.21) (e.g., see [41]). However this requires
rewriting a simulation code that evaluates f to one that evaluates f̄ . This can be automated
somewhat, and extended to general nonlinear problems, using the ideas of automatic dif-
ferentiation [43] along with formulas to approximate polynomial chaos expansions of more
general nonlinearities such as transcendental functions [25]. Moreover, applying this tech-
nique to nonlinear problems requires solving (3.23) using an appropriate nonlinear solver,
typically Newton’s method, which requires evaluating the Jacobian

∂f̄i
∂ūj

=

∫
Γ

∂f

∂u
(û(y), y)ψi(y)ψj(y)ρ(y)dy

≈
P∑
k=0

Jk〈ψiψjψk〉 i, j = 0, . . . , P

(3.24)

where

〈h(y)〉 ≡
∫

Γ

h(y)ρ(y)dy (3.25)

for any integrable function h and

P∑
k=0

Jkψk(y) ≈ ∂f

∂u
(û(y), y) (3.26)

is the polynomial chaos expansion of the system Jacobian, with

Jk ≡
1

〈ψ2
k〉

∫
Γ

∂f

∂u
(û(y), y)ψk(y)ρ(y)dy, k = 0, . . . , P. (3.27)

A discussion of methods for solving the resulting set of linear equations for the Newton
updates is beyond the scope of this report.
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3.3.4 Non-Intrusive Polynomial Chaos

A variant of the polynomial chaos method has been developed that eliminates the need to
solve a fully coupled system for the expansion coefficients ū. This approach, dubbed non-
intrusive polynomial chaos, approximates the solution in the same basis, but has coefficients
defined by

uk =
1

〈ψ2
k〉

∫
Γ

u(y)ψk(y)ρ(y)dy, k = 0, . . . , P. (3.28)

In practice, the integrals appearing in (3.28) are approximated via a quadrature method

1

〈ψ2
k〉

∫
Ω

u(ξ)ψk(ξ)dµ ≈
1

〈ψ2
k〉

Q∑
j=0

wjũjψk(yj), f(ũj, yj) = 0, j = 0, . . . Q, (3.29)

given suitably chosen quadrature points {yj} and weights {wj}. This method is different
from all of the previous methods in that it is not directly a Galerkin method, however
it still can be viewed as inducing a nonlinear problem f̄ = 0, if we use the quadrature
values ũj, j = 0, . . . , Q as the unknown coefficients, instead of the expansion coefficients uk,
k = 0, . . . , P . In this case,

f̄j(ũ) = f(ũj, yj) (3.30)

where ũ = (ũ0, . . . , ũQ). This appears to be quite similar to stochastic collocation, and if
the quadrature points {yj} are chosen to be the same, then the determined values {ũj} are
the stochastic collocation coefficients. The polynomial chaos coefficients are then given by a
simple linear transformation

uk =
1

〈ψ2
k〉

Q∑
j=0

wjũjψk(yj), k = 0, . . . , P. (3.31)

Thus we see that the non-intrusive polynomial chaos method is a linear transformation of
the stochastic collocation method, which amounts to a change of basis (from Lagrange to an
orthogonal basis).
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Chapter 4

Uncertainty Quantification of Coupled
Systems

We now turn to the primary technical focus of this report, investigating uncertainty quan-
tification methods for coupled systems. We consider the three families of coupled systems
described in Section 1.1 using the two component multi-physics (1.1), interfacial (1.2), and
network (1.4) prototypical examples to develop our ideas. As described in Section 3.3, we
assume each component in the coupled system is subject to a finite set of random param-
eters ξi = (ξi1 , . . . , ξiNi

) : Ω → RNi , i = 1, 2 defined on a probability space (Ω,B, µ). For a
multi-physics problem, we wish to approximate random functions u1 and u2 such that the
following equations are satisfied µ-almost everywhere:

f1(u1(ξ), u2(ξ), ξ1) = 0,

f2(u1(ξ), u2(ξ), ξ2) = 0,
(4.1)

where ξ = (ξ1, ξ2). Notice that even though each component fi is only subject to the random
parameters ξi, the solution (u1, u2) must be approximated over the product space ξ = (ξ1, ξ2)
because the equations are coupled. We have a similar formulation for the interfacially coupled
system

f1(u1(ξ), g2(u2(ξ)), ξ1) = 0,

f2(g1(u1(ξ)), u2(ξ), ξ2) = 0,
(4.2)

where we have assumed for simplicity the random appears directly within each component
fi, not within the interface gi. For the network coupled system, we wish to solve for random
functions u1, u2, x and y such that µ-almost everywhere

z1(ξ) = g1(u1(ξ), x1(ξ), x2(ξ)) s.t. f1(u1(ξ), x1(ξ), x2(ξ), ξ1) = 0,

z2(ξ) = g2(u2(ξ), x2(ξ), x3(ξ)) s.t. f2(u2(ξ), x2(ξ), x3(ξ), ξ2) = 0,

0 = F (z(ξ), x(ξ)).

(4.3)

Again, we have assumed uncertainty does not directly enter into the component interfaces
gi or into the network F itself.

In principle, any of the uncertainty propagation methods discussed in Chapter 3 can be
applied directly to any of these three types of coupled system uncertainty quantification
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problems, treating it as a larger implicit system for all of the unknowns. This is the typical
approach for estimating uncertainties in these types of problems. While convenient, such an
approach disregards all structure inherent in the coupled system itself. The aim of this work is
to leverage this structure with the hopes of making the overall uncertainty computation more
efficient. The approach is to instead apply the stochastic Galerkin methods from Chapter 3
to each component fi of the coupled system separately while applying the nonlinear solution
strategies from Chapter 2 to solve the stochastic coupled problem. The rationale behind
this is it would first allow different UQ methods to be applied to each component, and
second allow stochastic dimension reduction ideas to be applied at the interface of each
component. With this in mind, we describe in the next section how to formulate and solve a
stochastic coupled system using this approach, building on the ideas from Chapters 2 and 3.
We also examine the implications of applying different UQ methods to separate coupled
system components. This is then followed by a discussion of dimension reduction ideas in
Section 4.2.

4.1 Intrusive Coupled System Uncertainty Quantifica-

tion

As described in Section 3.3, application of a stochastic Galerkin method to compute an ap-
proximate solution û(ξ) =

∑P
k=0 ukψk(ξ) to a nonlinear system f(u(ξ), ξ) = 0 induces a new,

deterministic nonlinear problem f̄(ū) = 0 for the expansion coefficients ū = (u0, . . . , uP ),
with the form of this system determined by the choice of stochastic Galerkin method. This
property allows us to easily translate a stochastic coupled system into a similar determinis-
tic nonlinear problem. As before, let ρ be the joint PDF of ξ, Γ1 = ξ1(Ω), Γ2 = ξ2(Ω) and
Γ = ξ(Ω) = Γ1×Γ2. Consider first the multi-physics problem (4.1). Let P1 and P2 be given,
V 1
P1

and V 2
P2

be finite-dimensional subspaces of L2
ρ(Γ) with dimension P1 + 1 and P2 + 1 and

with bases {ψk : k = 0, . . . , P1} and {φk : k = 0, . . . , P2} respectively. Given coefficients
{uk1 : k = 0, . . . , P1}, {uk2 : k = 0, . . . , P2} define for y ∈ Γ

û1(y) =

P1∑
k=0

uk1ψk(y),

û2(y) =

P2∑
k=0

uk2φk(y).

(4.4)

Let ū1 = (u0
1, . . . , u

P1
1 ) and ū2 = (u0

2, . . . , u
P2
2 ), then (4.1) induces the deterministic nonlinear

problem

f̄1(ū1, ū2) = 0,

f̄2(ū1, ū2) = 0,
(4.5)
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where

f̄k1 (ū1, ū2) =

∫
Γ

f1(û1(y), û2(y), π1(y))ψk(y)ρ(y)dy, k = 0, . . . , P1,

f̄k2 (ū1, ū2) =

∫
Γ

f2(û1(y), û2(y), π2(y))φk(y)ρ(y)dy, k = 0, . . . , P2.

(4.6)

Here π1 : Γ→ Γ1 and π2 : Γ→ Γ2 are projection operators defined by πi(y1, y2) = yi, i = 1, 2,
for any (y1, y2) ∈ Γ. Equation (4.5) defines a deterministic nonlinear system for the unknown
coefficients ū1 and ū2, whose solution then can be approximated by any suitable nonlinear
solution strategy discussed in Chapter 2. A similar construction yields a corresponding
nonlinear problem for the interfacially coupled system

f̄1(ū1, ḡ2(ū2)) = 0,

f̄2(ḡ1(ū1), ū2) = 0,
(4.7)

where (ḡ1(ū1) and ḡ2(ū2) are merely notational conveniences)

f̄k1 (ū1, ḡ2(ū2)) =

∫
Γ

f1(û1(y), g2(û2(y)), π1(y))ψk(y)ρ(y)dy, k = 0, . . . , P1,

f̄k2 (ḡ1(ū1), ū2) =

∫
Γ

f2(g1(û1(y)), û2(y), π2(y))φk(y)ρ(y)dy, k = 0, . . . , P2.

(4.8)

For the network system we must define expansions for the network variables x = (x1, x2, x3)
and z = (z1, z2) in a given basis {ηk : k = 0, . . . , P3}:

x̂(y) =

P3∑
k=0

xkηk(y), y ∈ Γ, (4.9)

ẑ(y) =

P3∑
k=0

zkηk(y), y ∈ Γ. (4.10)

Defining x̄ = (x0, . . . , xP3) and z̄ = (z0, . . . , zP3) (with similar definitions for the components
of x and z), we then have the stochastic Galerkin network system

z̄1 = ḡ1(ū1, x̄1, x̄2) s.t. f̄1(ū1, x̄1, x̄2) = 0,

z̄2 = ḡ2(ū2, x̄2, x̄3) s.t. f̄2(ū2, x̄2, x̄3) = 0,

0 = F̄ (z̄, x̄)

(4.11)

with

f̄k1 (ū1, x̄1, x̄2) =

∫
Γ

f1(û1(y), x̂1(y), x̂2(y), π1(y))ψk(y)ρ(y)dy, k = 0, . . . , P1,

f̄k2 (ū2, x̄2, x̄3) =

∫
Γ

f2(û2(y), x̂2(y), x̂3(y), π2(y))φk(y)ρ(y)dy, k = 0, . . . , P2,

ẑ1(y) = g1(û1(y), x̂1(y), x̂2(y)),

ẑ2(y) = g2(û2(y), x̂2(y), x̂3(y)),

F̄ k(z̄, x̄) =

∫
Γ

F (ẑ(y), x̂(y))ηk(y)ρ(y)dy, k = 0, . . . , P1.

(4.12)
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For all three types of coupled system problems, the nonlinear solution strategies discussed
in Chapter 2 can then be applied to (4.1), (4.2) and (4.3), as they are merely deterministic
nonlinear problems for the unknown expansion coefficients introduced by the chosen stochas-
tic Galerkin method. Formulas from Chapter 3 show how to evaluate the residuals appearing
in these equations for each choice of method, as well as derivatives needed for Newton-based
approaches. Moreover, different bases (and thus stochastic Galerkin methods) can be applied
for each system, i.e., ψk 6= φk for each k. Of course, the devil here is really in the details.
Therefore more details on how the systems are formulated, as well as the implications of
choosing different bases for each component, are discussed in the following subsections for
each of the nonlinear solver methods presented in Chapter 2.

4.1.1 Forwardly Coupled Systems

Before moving on to the fully coupled case, we first discuss the simpler forwardly coupled
scenario. Consider, for example, the forwardly coupled version of the multi-physics prob-
lem (4.1):

f1(u1(ξ1), ξ1) = 0,

f2(u1(ξ1), u2(ξ1, ξ2), ξ2) = 0,
(4.13)

which after applying a stochastic Galerkin method with

û1(y) =

P1∑
k=0

uk1ψk(y), y ∈ Γ1

û2(y) =

P2∑
k=0

uk2φk(y), y ∈ Γ

(4.14)

yields the forwardly coupled problem

f̄1(ū1) = 0,

f̄2(ū1, ū2) = 0.
(4.15)

As usual, the first system of (4.15) can be solved for ū1 (which only requires a solution over
the space Γ1), and then substituted into the second system. This requires evaluating the
stochastic Galerkin residual for the second system in a potentially different basis than the
input û1:

f̄k2 (ū1, ū2) =

∫
Γ

f2(û1(π1(y)), û2(y), π2(y))φk(y)ρ(y)dy, k = 0, . . . , P2. (4.16)

For any of the sampling type methods (Monte Carlo, stochastic collocation and non-intrusive
polynomial chaos) applied to the second step, all that is required is to be able to evaluate
û1 at an arbitrary point y if the bases are different. This in turn requires forming the basis
{ψk}, which is never done for Monte Carlo (because of the very large number of samples)
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and is often not done for stochastic collocation (forming the interpolating polynomials in
high-dimensions with unstructured collocation grids is difficult). However for intrusive and
non-intrusive polynomial chaos, forming the basis is an inherent part of the method, and
therefore is not an issue. Conversely, some implementations of intrusive polynomial chaos
require converting all input expansions to the chosen orthogonal polynomial basis. Thus
applying this method to the second solve requires converting û1 to the same {φk} basis if
it is not represented in the same basis. Such a conversion is not difficult to compute if the
basis for û1 is at hand:

ũ1(y) =

P̃1∑
k=0

ũk1φk(y), ũk1 =
1

〈φ2
k〉

∫
Γ1

û1(y)φk(y)ρ(y)dy, k = 0, . . . , P̃1. (4.17)

Thus we see that, in general, heterogeneous UQ methods are only practical if the basis
can actually be formed, i.e., stochastic collocation with structured grids and intrusive/non-
intrusive polynomial chaos. This holds true for fully-coupled systems as well, since Picard
iteration is essentially a series of forward coupling problems, and the Newton approaches
incorporate derivative approximations to speed up Picard’s method.

4.1.2 Picard Iteration

The Picard iteration method presented in Section 2.2 naturally generalizes to the stochastic
Galerkin nonlinear problems (4.5) and (4.7) to compute the unknown coefficients ū1 ū2. As
with forward coupling, the UQ methods evaluating ū1 and ū2 are essentially independent at
each stage of the iteration, and different UQ methods can be used for each system (with the
same caveats as described above).

4.1.3 Newton’s Method

We now move to Newton-based methods, starting with the full Newton method from Sec-
tion 2.3. For simplicity, we only examine Newton’s method applied to the multi-physics
problem (4.5). In this case we are required to solve the following linear system

[
∂f̄1
∂ū1

∂f̄1
∂ū2

∂f̄2
∂ū1

∂f̄2
∂ū2

][
∆ū1

∆ū2

]
= −

[
f̄1(ū1, ū2)
f̄2(ū1, ū2)

]
(4.18)

for the updates ∆ū1 and ∆ū2. For a sampling method applied to the first system, we have
for the residual

f̄ i1 = f1(ui1, û2(yi), π1(yi)), i = 0, . . . , P1, (4.19)
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and therefore the first system derivatives are given by

∂f̄ i1
∂ūj1

=
∂f1

∂u1

(ui1, û2(yi), π1(yi))δij, i, j = 0, . . . , P1 (4.20)

∂f̄ i1
∂ūj2

=
∂f1

∂u2

(ui1, û2(yi), π1(yi))φj(yi), i = 0, . . . , P1, j = 0, . . . , P2. (4.21)

Notice that ∂f̄1/∂ū1 is block diagonal, whereas ∂f̄1/∂ū2 is not unless φj(yi) = δij, i.e., if
φj = ψj. Similar formulas can derived for a sampling method applied to system 2, and
therefore we see that the Newton system can be reordered to a block 2-by-2 diagonal system
only when the same sampling-based UQ method is applied to both systems. In this case,
this is then equivalent to applying the same sampling-based method to the original coupled
deterministic system.

For polynomial chaos applied to system 1, the residual f̄1 is given by (4.6), and its
derivatives are

∂f̄ i1
∂ūj1

=

∫
Γ

∂f1

∂u1

(û1(y), û2(y), π1(y))ψi(y)ψj(y)ρ(y)dy (4.22)

≈
P1∑
k=0

Jk11〈ψiψjψk〉 i, j = 0, . . . , P1, (4.23)

∂f̄ i1
∂ūj2

=

∫
Γ

∂f1

∂u2

(û1(y), û2(y), π1(y))ψi(y)φj(y)ρ(y)dy (4.24)

≈
P1∑
k=0

Jk12〈ψiφjψk〉 i = 0, . . . , P1, j = 0, . . . , P2, (4.25)

where

Jk11 =
1

〈ψ2
k〉

∫
Γ

∂f1

∂u1

(û1(y), û2(y), π1(y))ψk(y)ρ(y)dy, k = 0, . . . , P1, (4.26)

Jk12 =
1

〈ψ2
k〉

∫
Γ

∂f1

∂u2

(û1(y), û2(y), π1(y))ψk(y)ρ(y)dy, k = 0, . . . , P1. (4.27)

Again, similar formulas can be derived for polynomial chaos applied to system 2, and it is
straightforward to show that if polynomial chaos is applied to both systems, this is equivalent
to applying polynomial chaos to the original coupled system.

These derivations show that when a heterogeneous UQ method is applied between sys-
tems 1 and 2, we do not obtain a block diagonal system, or even a portion of a block
diagonal system, even when one is a sampling method. This is a serious drawback when
using sampling-only methods, however one is already accustomed to this when using poly-
nomial chaos type methods. Therefore the combination of say, stochastic collocation and
polynomial chaos is quite feasible, as long as the stochastic collocation Lagrange basis can be
formed. The efficiency of this is strongly dependent on cost of solving the resulting coupled
Newton system.
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4.1.4 Nonlinear Elimination for Interfacial Coupling

We next consider the nonlinear elimination method for interfacial-type coupling described
in 2. As shown in Algorithm 2, there are three stages for each iteration of the nonlinear
elimination algorithm. The first is to solve f̄1(ū1, ḡ2(ū2)) = 0 for ū1, treating ū2 as fixed,
using an appropriate nonlinear solver method. The next step is to compute the sensitivities

∂ū1

∂ū2

= −
(
∂f̄1

∂ū1

)−1
∂f̄1

∂ū2

. (4.28)

If a sampling-type method is applied for the first system, we have

f̄ i1 = f1(ui1, g2(û2(yi)), π1(yi)), i = 0, . . . , P1, (4.29)

and therefore

∂f̄ i1
∂ūj1

=
∂f1

∂u1

(ui1, g2(û2(yi)), π1(yi))δij, i, j = 0, . . . , P1 (4.30)

∂f̄ i1
∂ūj2

=
∂f1

∂g2

(ui1, g2(û2(yi)), π1(yi))
∂g2

∂u2

(û2(yi))φj(yi), i = 0, . . . , P1, j = 0, . . . , P2. (4.31)

Since ∂f̄1/∂ū1 is block diagonal, we then have(
∂ū1

∂ū2

)
ij

= φj(yi)

(
∂f1

∂u1

(ui1, g2(û2(yi)), π1(yi))

)−1
∂f1

∂g2

(ui1, g2(û2(yi)), π1(yi))
∂g2

∂u2

(û2(yi))

(4.32)
for i = 0, . . . , P1 and j = 0, . . . , P2. This is exactly collocation on the standard deter-
ministic sensitivity solve taking into account the additional functional dependence of û2 on
its coefficients ū2. Notice that the resulting sensitivity matrix is block diagonal only if a
heterogeneous UQ method is applied so that φi(yj) = δij.

For a polynomial chaos applied to the first system, we have f̄1(ū1, ḡ2(ū2)) given by (4.8)
and therefore

∂f̄ i1
∂ūj1

=

∫
Γ

∂f1

∂u1

(û1(y), g2(û2(y)), π1(y))ψi(y)ψj(y)ρ(y)dy (4.33)

≈
P1∑
k=0

Jk11〈ψiψjψk〉 i, j = 0, . . . , P1, (4.34)

∂f̄ i1
∂ūj2

=

∫
Γ

∂f1

∂g2

(û1(y), g2(û2(y)), π1(y))
∂g2

∂u2

(û2(y))ψi(y)φj(y)ρ(y)dy (4.35)

≈
P1∑
k=0

Jk12〈ψiφjψk〉 i = 0, . . . , P1, j = 0, . . . , P2, (4.36)
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where

Jk11 =
1

〈ψ2
k〉

∫
Γ

∂f1

∂u1

(û1(y), g2(û2(y)), π1(y))ψk(y)ρ(y)dy, k = 0, . . . , P1, (4.37)

Jk12 =
1

〈ψ2
k〉

∫
Γ

∂f1

∂u2

(û1(y), g2(û2(y)), π1(y))
∂g2

∂u2

(û2(y))ψk(y)ρ(y)dy, k = 0, . . . , P1. (4.38)

Notice that here we have defined {Jk12} to be the coefficients of the polynomial chaos ex-
pansion of (∂f1/∂g2)(∂g2/∂u2), not ∂f1/∂g2. From these formulas ∂ū1/∂ū2 can then be
computed via (4.28).

The final step in the nonlinear elimination procedure is to formulate and solve the Newton
equation for the second system:(

∂f̄2

∂ū1

∂ū1

∂ū2

+
∂f̄2

∂ū2

)
∆ū2 = −f̄2(ḡ1(ū1), ū2). (4.39)

As with the first system, we have the defining equations for the coefficients ū2 when using a
sampling method

f̄ i2 = f2(g1(û1(yi)), u
i
2, π2(yi)), i = 0, . . . , P2. (4.40)

and thus

∂f̄ i2
∂ūj2

=
∂f2

∂u2

(g1(û1(yi)), u
i
2, π2(yi))δij, (4.41)

∂f̄ i2
∂ūj1

=
∂f2

∂g1

(g1(û1(yi)), u
i
2, π2(yi))

∂g1

∂u1

(û1(yi))ψj(yi). (4.42)

The (i, j) block entry for i, j = 0, . . . , P2 of the matrix in (4.39) is then given by

(
∂f̄2

∂ū1

∂ū1

∂ū2

+
∂f̄2

∂ū2

)
ij

=

P1∑
l=0

∂f̄ i2
∂ūl1

∂ūl1
∂ūj1

+
∂f̄ i2
∂ūj2

=
∂f2

∂g1

(g1(û1(yi)), u
i
2, π2(yi))

∂g1

∂u1

(û1(yi))

P1∑
l=0

ψl(yi)
∂ūl1
∂ūj1

+ δij
∂f2

∂u2

(g1(û1(yi)), u
i
2, π2(yi)).

(4.43)

As with Newton’s method we do not obtain a block-diagonal system in general. However,
if the same sampling method is applied to the first system, then P1 = P2, ψl(yi) = δli,
φj(yi) = δij, and (4.43) reduces to the block diagonal nonlinear elimination system(
∂f̄2

∂ū1

∂ū1

∂ū2

+
∂f̄2

∂ū2

)
ij

= δij

(
∂f2

∂g1

(g1(ui1), ui2, π2(yi))
∂g1

∂u1

(ui1)
∂ūi1
∂ūi2

+
∂f2

∂u2

(g1(ui1)), ui2, π2(yi)))

)
.

(4.44)
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Similarly, for polynomial chaos applied to this system we have f̄2(ḡ1(ū1), ū2) given by (4.8)
and

∂f̄ i2
∂ūj2

=

∫
Γ

∂f2

∂u2

(g1(û1(y)), û2(y), π2(y))φi(y)φj(y)ρ(y)dy (4.45)

≈
P2∑
k=0

Jk22〈φiφjφk〉 i, j = 0, . . . , P2, (4.46)

∂f̄ i2
∂ūj1

=

∫
Γ

∂f2

∂g1

(g1(û1(y)), û2(y), π2(y))
∂g1

∂u1

(û1(y))φi(y)ψj(y)ρ(y)dy (4.47)

≈
P2∑
k=0

Jk21〈φiψjφk〉 i = 0, . . . , P2, j = 0, . . . , P1, (4.48)

where

Jk22 =
1

〈φ2
k〉

∫
Γ

∂f2

∂u2

(g1(û1(y)), û2(y), π2(y))φk(y)ρ(y)dy, k = 0, . . . , P2, (4.49)

Jk21 =
1

〈φ2
k〉

∫
Γ

∂f2

∂u1

(g1(û1(y)), û2(y), π2(y))
∂g1

∂u1

(û1(y))φk(y)ρ(y)dy, k = 0, . . . , P2. (4.50)

From these formulas, and the corresponding formulas for ∂ū1/∂ū2, the linear system (4.39)
can then be constructed.

4.1.5 Nonlinear Elimination for Network Coupling

We finally consider the nonlinear elimination method for network-type coupling described
in Chapter 2. Referring to Algorithm 3, there are four stages of the algorithm when ap-
plied to stochastic Galerkin system (4.11) that we must consider. First is the evalua-
tion ū1 and ū2 from the equations f̄1(ū1, x̄1, x̄2) = 0 and f̄2(ū2, x̄2, x̄3) = 0. This just
requires straightforward application of the appropriate nonlinear solution strategy given
the choice of the stochastic Galerkin methods for each of these systems. Second is the
evaluation of the coefficients z̄ from the relationships ẑ1(y) = g1(û1(y), x̂1(y), x̂2(y)) and
ẑ2(y) = g2(û2(y), x̂2(y), x̂3(y)). This is straightforward given the choice of the stochastic
Galerkin method, e.g., for a sampling method

zk1 = g1(û1(yk), x
k
1, x

k
2), k = 0, . . . , P3 (4.51)

and for polynomial chaos

zk1 =
1

〈η2
k〉

∫
Γ

g1(û1(y), x̂1(y), x̂2(y))ηk(y)ρ(y)dy, k = 0, . . . , P3. (4.52)

Third is the evaluation of the sensitivities ∂z̄/∂x̄, corresponding to (2.10). The techniques for
evaluating these sensitivities have already been discussed above in the nonlinear elimination
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section for interfacial coupling. For example, with a sampling method applied to the network
system we have

∂z̄i1
∂x̄j1

=

P1∑
l=0

∂g1

∂u1

(û1(yi), x
i
1, x

i
2))
∂ul1
∂xj1

ψl(yi) +
∂g1

∂x1

(û1(yi), x
i
1, x

i
2))δij, i, j = 0, . . . , P3 (4.53)

where ∂ul1/∂x
j
1 = (∂ū1/∂x̄1)lj is determined from f̄1(ū1, x̄1, x̄2) = 0, given the choice of

stochastic Galerkin method for this system. As should be expected, this sensitivity matrix
is only block diagonal if each network component and the network system use the same
sampling method. Similarly for the polynomial chaos approach applied to the network
system we have

∂z̄i1
∂x̄j1

=
1

〈η2
i 〉

P1∑
l=0

∫
Γ

∂g1

∂u1

(û1(y), x̂1(y), x̂2(y))
∂ul1
∂xj1

ψl(y)ηi(y)ρ(y)dy

+
1

〈η2
i 〉

∫
Γ

∂g1

∂x1

(û1(y), x̂1(y), x̂2(y))ηj(y)ηi(y)ρ(y)dy, i, j = 0, . . . , P3. (4.54)

The fourth step is the evaluation and solution of the network Newton system(
∂F̄

∂z̄

∂z̄

∂x̄
+
∂F̄

∂x̄

)
∆x̄ = −F̄ (z̄, x̄). (4.55)

The formation of this linear system is quite similar to that described in the nonlinear elim-
ination for interfacial coupling section above, and therefore will not be repeated here. We
emphasize that if a sampling method is applied to the network system, we do not obtain
a block-diagonal Newton system, unless all components in the network employ the same
sampling method.

4.1.6 Convergence Criteria

An important aspect of the previous nonlinear solution algorithms applied to the uncertainty
quantification system is deciding convergence. The advantage of the approach discussed
in this report is that it transforms the stochastic problem into a deterministic-parametric
problem for the expansions coefficients ū1 and ū2. Thus standard, deterministic convergence
criteria can be applied such as update norms (e.g., ||∆ū1||2) and residual norms (e.g., ||f̄1||2)
which can easily be computed in terms of their coefficients. Note that it would also be
possible to use statistical moments as convergence criteria such as the mean or standard
deviation of û1 and û2. This may make more sense if one is only interested in such moments
since the convergence criteria would relate directly to the accuracy to which those moments
have been approximated. However if the full expansion is needed, for example for probability
or validation calculations, then basing convergence on the coefficients directly is likely more
advisable.
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4.2 Inter-System Stochastic Dimension Reduction

As we have seen in the previous section, an advantage of this intrusive uncertainty quantifi-
cation approach for coupled systems is that it provides greater freedom to how uncertainty is
estimated in each component of that system. In particular we have shown that each compo-
nent can employ a different stochastic Galerkin method, representing its solution component
in a different stochastic Galerkin basis. Throughout that section however, we have assumed
each component is computing its approximation over the same stochastic space, with the
same random vectors as coordinates, and with the same joint probability distribution func-
tion. We now relax that assumption, with an eye toward reducing the dimension of the
stochastic space each component computes its approximate expansion over. Given that for
most of these methods the cost grows exponentially with the dimension of this space, any
reduction in the dimension can potentially dramatically reduce the overall computational
cost. We first consider the more general case of multi-physics coupling, which requires em-
ploying random field modeling techniques from Section 3.1, and then move to the simpler
case of interfacial and network coupling.

4.2.1 Dimension Reduction in Multi-Physics Systems

Consider the following scalar multi-physics coupled PDE system:

F1(u1(x, ξ), u2(x, ξ), x, ξ1) = 0,

F2(u1(x, ξ), u2(x, ξ), x, ξ2) = 0,
(4.56)

defined on a bounded domain x ⊂ D ⊂ Rd with a given finite dimensional set of random
parameters ξ, and u1, u2 belonging to a given Hilbert space H. The solutions u1 and
u2 are approximated using some spatial discretization method (e.g., finite-elements) and a
stochastic Galerkin discretization, yielding approximate solutions

û1(x, ξ(ω)) =

n1∑
j=0

P1∑
k=0

ujk1 χj(x)ψk(ξ(ω))

û2(x, ξ(ω)) =

n2∑
j=0

P2∑
k=0

ujk2 θj(x)φk(ξ(ω))

(4.57)

where {χj} and {θj} are basis functions for the spatial discretization. Then û1 is a random
field, and so its Karhunen-Loève expansion from Section 3.1 can be computed

û1(x, ξ(ω)) = Eû1(x, ξ) +
∞∑
k=0

√
λkbk(x)ζk(ω) (4.58)

where
〈covû1(x, ·), bk〉H = λkbk(x), k = 1, . . . ,∞, (4.59)
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and 〈·, ·〉H denotes the Hilbert space inner product. The covariance function covû1 is given
by

covû1(x, x
′) = E ((û1(x, ξ)− Eû1(x, ξ))(û1(x′, ξ)− Eû1(x′, ξ)))

=

n1∑
j,l=0

P1∑
k,s=0

ujk1 u
ls
1 φj(x)φl(x

′)(E(ψkψs)− EψkEψs).
(4.60)

By examining the decay of the eigenvalues λk, a dimension Ñ1 can be determined to truncate
the expansion (4.58)

û1(x, ξ(ω)) ≈ Eû1(x, ξ) +

Ñ1∑
k=0

√
λkbk(x)ζk(ω). (4.61)

This defines a new set finite-dimensional set of random variables ζ = (ζ1, . . . , ζÑ1
) given by

ζk(ω) =
1√
λk
〈û1(·, ξ(ω))− Eû1(·, ξ), bk〉H , k = 1, . . . , Ñ1. (4.62)

for which û1 can be approximated by (4.61). The essential idea here is to compute this
representation at intermediate stages of the nonlinear solution process used to compute the
coefficients û1 and û2, basing the representation on approximations from previous nonlinear
iterations. The hope is the new space spanned by ζ will have significantly smaller dimension
Ñ1 than N , that of the original space ξ for the same level of accuracy, making the cost of
calculating the subsequent approximations of ũ1 and ũ2 significantly cheaper. In particular,
consider the discrete nonlinear problem induced by (4.56) and (4.57)

f̄1(ū1, ū2) = 0,

f̄2(ū1, ū2) = 0,
(4.63)

where ūi = (u0
i , . . . , u

Pi
i ) and uki = (u0k

i , . . . , u
nk
i ) for k = 0, . . . , Pi and i = 1, 2. Consider

applying Picard iteration to (4.63), assuming that at stage k, approximations u
(k−1)
1 and

u
(k−1)
2 are known. Assume the first step in the Picard iteration for stage k has been completed,

producing the next approximate solution u
(k)
1 satisfying

f̄1(ū
(k)
1 , ū

(k−1)
2 ) = 0. (4.64)

Using this approximation ū
(k)
1 , assume the truncated Karhunen-Loève expansion (4.61) has

been computed, yielding a new set of random variables ζ defined by (4.62). With these

new random variables, û
(k)
1 is given by simply a degree-1 polynomial in ζ and defines a

new coefficient vector ũ
(k)
1 . Given the particular stochastic Galerkin method for the second

system, assume a new basis {ηj : j = 0, . . . P̃2} can be generated to approximate u2 over
(ζ, ξ2):

û2(ζ, ξ2) ≈
P̃2∑
j=0

ũj2ηj(ζ, ξ2). (4.65)
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Define, as usual, ũ2 = (ũ0
2, . . . , ũ

P̃2
2 ), then the chosen stochastic Galerkin method defines a

new nonlinear problem for the second system

f̃2(ũ
(k)
1 , ũ2) = 0 (4.66)

to be solved for ũ2. This idea can then be repeated for the next iteration of the Picard
method, applying the Karhunen-Loève expansion to the just approximated û2, and so on.

To implement this idea in a practical algorithm, several issues must be addressed. The
first is, given a stochastic Galerkin expansion such as (4.57), how to solve the integral
eigenproblem (4.59) for the Karhunen-Loève eigenvalues {λk} and eigenfunctions {bk}. We
describe one approach here, following the ideas presented in [26], transforming the integral
eigenproblem to a discrete eigenvalue problem based on a Galerkin projection. In particular,
for each k the eigenfunction bk(x) can be approximated by the spatial discretization

bk(x) ≈ b̂k(x) =

n1∑
j=0

βjkχj(x). (4.67)

Substituting this into (4.59) and requiring the resulting error to be orthogonal to each φi
yields the following discrete eigenvalue problem

MTCMβk = λkM
Tβk (4.68)

where M is the mass matrix induced by the Hilbert space H

Mij = 〈φi, φj〉H , i, j = 0, . . . , n1, (4.69)

C is the nodal covariance matrix

Cij =

P1∑
k,l=0

uik1 u
jl
1 (E(ψkψl)− EψkEψl), i, j = 0, . . . , P1, (4.70)

and βk = (β0k, . . . , βnk). Thus the eigenfunctions and eigenvalues can be approximated
through a single discrete eigenproblem of a size given by the spatial discretization.

The second issue is, once the Karhunen-Loève expansion has been computed defining the
new random variables ζ, how to generate the new basis {ηj : j = 0, . . . , P̃2}. For polynomial
chaos, this requires forming a new basis that is orthogonal with respect to the probability
measure defined ζ. Methods for this have been investigated in the literature [91, 92] using a
Stieltjes procedure for a general three-term recurrence relation [37, 38]. A significant issue
here is the numerical efficiency and stability of these procedures, given that the distribution
of ζ can not be written down in closed form and must be approximated through (4.62). In
principle, such a procedure is not required for stochastic collocation, since it is not based on
an orthogonal polynomial basis. However determining optimal collocation points requires
finding the zeros of these same orthogonal polynomials. These zeros can be found through
an eigenvalue problem derived from the three-term recurrence [37, 38].
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The third issue is how to decide convergence. When the basis is fixed throughout the
nonlinear solution process, the stochastic Galerkin expansion coefficients and/or the stochas-
tic Galerkin residuals can be used to measure convergence, just as with any deterministic
problem. The expansion coefficients certainly can no longer be used, as their definition is
changing each iteration. It should still be feasible to use stochastic Galerkin residuals for
convergence however, even though the space upon which they are defined is changing. This
is somewhat akin to residual scaling that is changed at each iteration of the nonlinear solver.
It would also be possible to use statistical moments as well.

The final issue is how to extend these ideas to Newton-based approaches. Given satisfac-
tory resolution of the other three issues above, extending from Picard’s Method to Newton’s
Method applied to (4.63) is not difficult. Assume a full Newton method is applied to (4.63),

and at a given stage k, approximate solutions û
(k−1)
1 and û2(k − 1) are known. The dimen-

sion reduction techniques described above can then be applied to both û
(k−1)
1 and û

(k−1)
2 ,

yielding two new sets of random variables ζ1 and ζ2. New bases {η1
k : k = 0, . . . P̃1} and

{η2
k : k = 0, . . . P̃2} are constructed over (ζ2, ξ1) and (ζ1, ξ2) respectively, which define a new

nonlinear problem

f̃1(ũ1, ũ2) = 0

f̃2(ũ1, ũ2) = 0
(4.71)

for the next iteration of Newton’s method. The Newton system can then be formed and
solved (using the current approximations for u1 and u2 in the new basis) using the techniques
discussed earlier in this report. Convergence is then determined as described above. Note
this not only potentially reduces the stochastic dimension N , but may also reduce the order
of expansions required since at each stage the solution is re-approximated in a degree one
basis.

4.2.2 Dimension Reduction in Interfacial and Network Systems

These ideas can be applied to interfacial and network coupled systems as well, and in fact,
these are simpler in that the Karhunen-Loève expansion is not needed to reduce the dimen-
sion of the solution at the system interface (essentially the form of the interfacial or network
system already does this through their form of coupling). For an interfacially coupled system

f1(û1(ξ), g2(û2(ξ)), ξ1) = 0,

f2(g1(û1(ξ)), û2(ξ), ξ2) = 0,
(4.72)

new random variables can be directly defined

ζ1 = g1(û1(ξ)),

ζ2 = g2(û2(ξ)).
(4.73)

Such random variables can be defined at each stage of a nonlinear solution process for solving
the stochastic Galerkin system, in the same manner as described above. As in the multi-
physics case, the primary issue here is computing the new bases {η1

k} and {η2
k} over the spaces
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(ζ2, ξ1) and (ζ1, ξ2) respectively. The advantage here is the stochastic Galerkin method for
each system only need compute an approximation over the minimum space necessary, that
defined by its own random variables (ξi) and its interface to the other system (ζj). Of course,
the same idea can be applied to the network system

ŷ1 = g1(û1, x̂1, x̂2) s.t. f1(û1, x̂1, x̂2, ξ1) = 0,

ŷ2 = g2(û2, x̂2, x̂3) s.t. f2(û2, x̂2, x̂3, ξ2) = 0,

0 = F (ŷ, x̂)

(4.74)

by defining random variables

ζ1 = x̂1(ξ),

ζ2 = x̂2(ξ),

ζ3 = x̂3(ξ),

ζ4 = ŷ1(ξ),

ζ5 = ŷ2(ξ).

(4.75)

As above, each system component is only required to compute an approximation over its own
random variables plus its connections to the rest of the network, and the network system
must only compute an approximation over the number of random variables equal to the
number of network components.
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Chapter 5

Summary and Conclusions

In this report we have described mathematical approaches for uncertainty quantification of
coupled systems that attempt to exploit their inherent structure in order to reduce compu-
tational cost. Three basic forms of coupled systems were considered, shared-domain multi-
physics, interfacially coupled, and network coupled systems. Several deterministic nonlinear
solution strategies appropriate for these types of coupled systems were reviewed, including
Picard iteration, Newton’s method, and two forms of nonlinear elimination. Several un-
certainty quantification methods were described as well, including Monte Carlo, stochastic
collocation, polynomial chaos, and non-intrusive polynomial chaos, and cast in the unifying
form of general stochastic Galerkin methods. It was shown how these methods translate
a nonlinear stochastic system into a deterministic parametric nonlinear system, inducing a
new nonlinear system of equations for the stochastic Galerkin expansion coefficients. This
property was exploited to apply a potentially different stochastic Galerkin method to each
component in a coupled system, yielding a new coupled system for the expansion coeffi-
cients. Solutions to this coupled system could then be approximated through the standard
coupled-system nonlinear solution processes discussed earlier. Two potential benefits for this
approach were discussed: heterogeneous uncertainty quantification where separate methods
are applied to each component, and stochastic dimension reduction at the coupled system
interface. Two approaches for the latter were presented, the first for multi-physics coupling
based on Karhunen-Loève expansions of random fields, and the second for interfacial and
network coupling based on stochastic Galerkin methods for random variables with general
probability distributions. We now highlight important challenges in reaping these benefits
in computational settings.

The first advantage of this intrusive coupled systems UQ approach is that it enables
heterogeneous uncertainty quantification methods to be applied throughout the coupled
system, and the feasibility of this idea was demonstrated in this report. As was shown in
Section 4.1 however, this always results in a fully coupled nonlinear system for the expansion
coefficients, even when normally uncoupled sampling methods are applied. This is true unless
the same sampling method in the same basis is applied throughout the coupled system. Thus
the potential benefits of reducing the cost of the uncertainty computation in each system
component has to be weighed against the increased complexity and likely computational cost
of needing to form and solve the fully coupled nonlinear system at the coupled system level.
To address this issue, it is necessary to build simulation tools for coupled system components
that support a variety of uncertainty quantification methods, and coupling tools that are
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capable of both forming the fully coupled nonlinear systems arising from heterogeneous UQ,
and can apply the strong solution strategies discussed in this report.

The second advantage of this approach is that it allows dimension reduction ideas to be
applied at the interface between coupled system components, and again the feasibility of
this was demonstrated in this report. Here the potential cost savings is quite dramatic, due
to the exponential growth in computational cost with the dimension of the stochastic space
for many of the stochastic Galerkin UQ methods. However this does not come without its
costs as well. For multi-physics systems, the discrete Karhunen-Loève eigensystem (4.68)
must be formed and solved for the eigenvectors and eigenvalues defining the new stochastic
coordinates, then new basis functions must be generated based on the probability distribution
of these new coordinates. For interfacial and network systems, only the latter step is required.
Furthermore, these calculations must be performed at each iteration of the overall nonlinear
solution process. It is unclear what effect, if any, this has on the convergence of the overall
nonlinear solution process as well. Thus the benefit of reduced dimension must be weighed
against the costs of these extra transformations, and possibly extra nonlinear iterations, to
determine the overall benefit. Again, such comparisons can only be made with software tools
implementing these ideas that can be applied to challenging coupled systems of interest.

In conclusion then, we see three fundamental research areas that must go forward for
these ideas to have impact on challenging coupled systems:

1. Computational tools for random field modeling including Karhunen-Loève expansions
of random fields defined by stochastic Galerkin expansions.

2. Computational tools for generating stochastic Galerkin expansions over stochastic
spaces with general probability distributions.

3. Software tools for simulating coupled systems that support the intrusive UQ ideas pre-
sented here, including forming and solving heterogeneous UQ nonlinear systems, and
applying dimesion reductions with corresponding stochastic coordinate/basis changes
at each iteration.

We note that software tools for the first item are underway, through the PECOS library,
which was partially supported through this LDRD. Initial software components in the direc-
tion of item three were also created through this LDRD, as part of the Albany rapid pro-
duction project. However for these ideas to have any significant impact on real applications,
a multi-year project dedicated to bringing these ideas together in a general computational
and software framework will be necessary.
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[11] I. M. Babuška, F. Nobile, and R. Tempone. A stochastic collocation method for elliptic
partial differential equations with random input data. SIAM J. Num. Anal., 45(3):
1005–1034, 2007. 21, 22

[12] I. M. Babuška, F. Nobile, R. Tempone, and C. Webster. Stochastic collocation methods
for nonlinear elliptic partial differential equations with random input data. In progress,
2007. 22
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